Home

Dalset Baignoire Masse bio supported palladium nanoparticles as a phosphine free catalyst Peignoir gris Uniformément

Biogenic synthesis of palladium nanoparticles and their applications as  catalyst and antimicrobial agent | PLOS ONE
Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent | PLOS ONE

Bio-supported palladium nanoparticles as a phosphine -free catalyst for the  Suzuki reaction in water - RSC Advances (RSC Publishing)  DOI:10.1039/C2RA01015A
Bio-supported palladium nanoparticles as a phosphine -free catalyst for the Suzuki reaction in water - RSC Advances (RSC Publishing) DOI:10.1039/C2RA01015A

Enhancing stability by trapping palladium inside N-heterocyclic  carbene-functionalized hypercrosslinked polymers for heterogeneous C-C bond  formations | Nature Communications
Enhancing stability by trapping palladium inside N-heterocyclic carbene-functionalized hypercrosslinked polymers for heterogeneous C-C bond formations | Nature Communications

Shielding Effect of Nanomicelles: Stable and Catalytically Active  Oxidizable Pd(0) Nanoparticle Catalyst Compatible for Cross-Couplings of  Water-Sensitive Acid Chlorides in Water | JACS Au
Shielding Effect of Nanomicelles: Stable and Catalytically Active Oxidizable Pd(0) Nanoparticle Catalyst Compatible for Cross-Couplings of Water-Sensitive Acid Chlorides in Water | JACS Au

Phosphine‑Functionalized Chitosan Microparticles as Support Materials for Palladium  Nanoparticles in Heck Reactions | Request PDF
Phosphine‑Functionalized Chitosan Microparticles as Support Materials for Palladium Nanoparticles in Heck Reactions | Request PDF

Bio-supported palladium nanoparticles as a phosphine-free catalyst for the  Suzuki reaction in water - RSC Advances (RSC Publishing)
Bio-supported palladium nanoparticles as a phosphine-free catalyst for the Suzuki reaction in water - RSC Advances (RSC Publishing)

Palladium nanoparticle biosynthesis via Yerba Mate (Ilex paraguariensis)  extract: an efficient eco-friendly catalyst for Suzuki–Miyaura reactions |  SpringerLink
Palladium nanoparticle biosynthesis via Yerba Mate (Ilex paraguariensis) extract: an efficient eco-friendly catalyst for Suzuki–Miyaura reactions | SpringerLink

Deposition of Palladium Nanoparticles by the Coating of the Carbonaceous  Layer from Wastepaper-Derived Bio-Oil | ACS Omega
Deposition of Palladium Nanoparticles by the Coating of the Carbonaceous Layer from Wastepaper-Derived Bio-Oil | ACS Omega

Biogenic synthesis of palladium nanoparticles and their applications as  catalyst and antimicrobial agent | PLOS ONE
Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent | PLOS ONE

Nano-palladium is a cellular catalyst for in vivo chemistry | Nature  Communications
Nano-palladium is a cellular catalyst for in vivo chemistry | Nature Communications

Catalysts | Free Full-Text | Palladium Nanoparticles Supported on  Smopex-234® as Valuable Catalysts for the Synthesis of Heterocycles
Catalysts | Free Full-Text | Palladium Nanoparticles Supported on Smopex-234® as Valuable Catalysts for the Synthesis of Heterocycles

Preparation scheme of phosphine bound Cell-OOCPhPPh2-Pd nanocatalyst,... |  Download Scientific Diagram
Preparation scheme of phosphine bound Cell-OOCPhPPh2-Pd nanocatalyst,... | Download Scientific Diagram

ChemCatChem: Vol 12, No 11 - Chemistry Europe
ChemCatChem: Vol 12, No 11 - Chemistry Europe

Palladium nanoparticle-decorated reduced graphene oxide sheets synthesized  using Ficus carica fruit extract: A catalyst for Suzuki cross-coupling  reactions | PLOS ONE
Palladium nanoparticle-decorated reduced graphene oxide sheets synthesized using Ficus carica fruit extract: A catalyst for Suzuki cross-coupling reactions | PLOS ONE

BJOC - Palladium nanoparticles supported on chitin-based nanomaterials as  heterogeneous catalysts for the Heck coupling reaction
BJOC - Palladium nanoparticles supported on chitin-based nanomaterials as heterogeneous catalysts for the Heck coupling reaction

Deposition of Palladium Nanoparticles by the Coating of the Carbonaceous  Layer from Wastepaper-Derived Bio-Oil | ACS Omega
Deposition of Palladium Nanoparticles by the Coating of the Carbonaceous Layer from Wastepaper-Derived Bio-Oil | ACS Omega

Catalysts | Free Full-Text | Green Synthesis of Pd Nanoparticles for  Sustainable and Environmentally Benign Processes
Catalysts | Free Full-Text | Green Synthesis of Pd Nanoparticles for Sustainable and Environmentally Benign Processes

Catalytic Properties of Unsupported Palladium Nanoparticle Surfaces Capped  with Small Organic Ligands - Gavia - 2015 - ChemCatChem - Wiley Online  Library
Catalytic Properties of Unsupported Palladium Nanoparticle Surfaces Capped with Small Organic Ligands - Gavia - 2015 - ChemCatChem - Wiley Online Library

Immobilizing biogenically synthesized palladium nanoparticles on cellulose  support as a green and sustainable dip catalyst for cross-coupling reaction  | SpringerLink
Immobilizing biogenically synthesized palladium nanoparticles on cellulose support as a green and sustainable dip catalyst for cross-coupling reaction | SpringerLink

One-pot synthesis of bio-supported Pd nanoparticles by using clove leaf and  their catalytic performance for Suzuki coupling reaction - ScienceDirect
One-pot synthesis of bio-supported Pd nanoparticles by using clove leaf and their catalytic performance for Suzuki coupling reaction - ScienceDirect

Catalytic activity of biomass-supported Pd nanoparticles: Influence of the  biological component in catalytic efficacy and potential application in  'green' synthesis of fine chemicals and pharmaceuticals - ScienceDirect
Catalytic activity of biomass-supported Pd nanoparticles: Influence of the biological component in catalytic efficacy and potential application in 'green' synthesis of fine chemicals and pharmaceuticals - ScienceDirect

Composites of palladium nanoparticles and graphene oxide as a highly active  and reusable catalyst for the hydrogenation of nitroarenes - ScienceDirect
Composites of palladium nanoparticles and graphene oxide as a highly active and reusable catalyst for the hydrogenation of nitroarenes - ScienceDirect

Molecular Cage Impregnated Palladium Nanoparticles: Efficient, Additive-Free  Heterogeneous Catalysts for Cyanation of Aryl Halides | Journal of the  American Chemical Society
Molecular Cage Impregnated Palladium Nanoparticles: Efficient, Additive-Free Heterogeneous Catalysts for Cyanation of Aryl Halides | Journal of the American Chemical Society